skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. ABSTRACT Necrotrophic pathogens cause serious threats to agricultural crops, and understanding the resistance genes and their genetic networks is key to breeding new plant cultivars with better resistance traits. AlthoughAlternaria alternatacauses black spot in important leafy brassica vegetables, and leads to significant loss of yield and food quality, little is known about plant–A. alternatainteractions. In this study, we used a unique and large collection of single, double and triple mutant lines of defence metabolite regulators inArabidopsisto explore how these transcription factors and their epistatic networks may influenceA. alternatainfections. This identified nine novel regulators and 20 pairs of epistatic interactions that modulateArabidopsisplants' defence responses toA. alternatainfection. We further showed that the glucosinolate 4‐methoxy‐indol‐3‐ylmethyl is the only glucosinolate consistently responsive toA. alternatainfection in Col‐0 ecotype. With the further exploration of the regulators and the genetic networks on modulating the accumulation of glucosinolates underA. alternatainfection, an inverted triangle regulatory model was proposed forArabidopsisplants' defence responses at a metabolic level and a phenotypic level. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Abstract Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy. The enhanced system utilizes a semi-transparent silicon (Si) nanolayer over the substrate to enhance visualization in both inverted and upright microscope setups while reducing Raman noise from the substrate. We validated the system’s chemical stability and capability to monitor gas evolution and gas-liquid reactions in situ. The enhanced under-oil open microfluidic system, integrating Raman spectroscopy, offers a robust open-microfluidic platform for label-free molecular sensing and real-time chemical/biochemical process monitoring in multi-phase systems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. With widespread occurrence and increasing concern of emerging contaminants (CECs) in source water, biologically active filters (BAF) have been gaining acceptance in water treatment. Both BAFs and graphene oxide (GO) have been shown to be effective in treating CECs. However, studies to date have not addressed interactions between GO and microbial communities in water treatment processes such as BAFs. Therefore, in the present study, we investigated the effect of GO on the properties and microbial growth rate in a BAF system. Synthesized GO was characterized with a number of tools, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectrometry. GO exhibited the characteristic surface functional groups (i.e., C-OH, C=O, C-O-C, and COOH), crystalline structure, and sheet-like morphology. To address the potential toxicity of GO on the microbial community, reactive oxygen species (ROS) generation was measured using nitro blue tetrazolium (NBT) assay. Results revealed that during the exponential growth phase, ROS generation was not observed in the presence of GO compared to the control batch. In fact, the adenosine triphosphate (ATP) concentrations increased in the presence of GO (25 μg/L - 1000 μg/L) compared to the control without GO. The growth rate in systems with GO exceeded the control by 20 % to 46 %. SEM images showed that GO sheets can form an effective scaffold to promote bacterial adhesion, proliferation, and biofilm formation, demonstrating its biocompatibility. Next-generation sequencing (Illumina MiSeq) was used to characterize the BAF microbial community, and high-throughput sequencing analysis confirmed the greater richness and more diverse microbial communities compared to systems without GO. This study is the first to report the effect of GO on the microbial community of BAF from a water treatment plant, which provides new insights into the potential of utilizing a bio-optimized BAF for advanced and sustainable water treatment or reuse strategies. 
    more » « less
  6. Abstract We define Hecke correspondences and Hecke operators on unitary RZ spaces and study their basic geometric properties, including a commutativity conjecture on Hecke operators. Then we formulate the arithmetic fundamental lemma conjecture for the spherical Hecke algebra. We also formulate a conjecture on the abundance of spherical Hecke functions with identically vanishing first derivative of orbital integrals. We prove these conjectures for the case$$\textrm{U} (1)\times \textrm{U} (2)$$ U ( 1 ) × U ( 2 )
    more » « less
  7. ABSTRACT This study integrates analytical and experimental research to develop an innovative shake table testing method called Floor Acceleration Simulation Test (FAST). The primary objective of FAST is to produce an essentially elastic response of a single‐story test specimen to replicate the floor acceleration time history including higher‐mode effects of a target floor in a multistory building experiencing inelastic behavior during an earthquake. The FAST method is well suited for experimental research where the absolute accelerations and the associated inertial forces of the floor diaphragms cannot be simulated by the majority of the conventional test methods. The proposed methodology is based on a transfer function in the frequency domain to compute the required input motion for testing. Considering the physical constraints of a given shake table test facility, guidelines with two response spectra to bracket the natural frequency of the test building are also presented for practical implementation. Experimental validation was carried out on a half‐scale, single‐story steel building featuring a composite floor slab, utilizing the NHERI@UCSD Large High‐Performance Outdoor Shake Table (LHPOST) facility. The results demonstrate the effectiveness of FAST, as both analytical predictions and experimental outcomes confirm its validity. Despite instances of measured floor acceleration amplitude exceeding the target response due to table input motion overshooting in this test program, test results confirmed that the FAST accurately reproduced the intended frequency content, indicative of higher mode effects in the multistory prototype building, in the single‐story test building. 
    more » « less